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Abstract. Boundary-integral equations for large deformation of shear-deformable plates are presented. Two differ-
ent methods are used to calculate the derivatives of the nonlinear terms in the domain integral. The first approach
requires the evaluation of a hypersingular domain integral. The second approach avoids the calculation of a hyper-
singular integral by utilizing radial basis functions to approximate the integrand. Quadratic isoparametric bound-
ary-elements are used to discretise the boundary, and constant cell elements are used to discretise the domain.
For the solution of a nonlinear problem four methods are presented. They include: total incremental method,
cumulative-load incremental method, Euler method and nonlinear system method. Several examples are presented
and comparisons with analytical results and other numerical results are made to demonstrate the accuracy of the
proposed methods.
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1. Introduction

Geometrically nonlinear behaviour in solid mechanics is an important problem in engineer-
ing practice. The bending of rectangular plates with large deflection was studied by Levy [1,2]
by solving the von Kármán equation in terms of trigonometric series. An approximate anal-
ysis of the large deflection for plates was introduced by Berger [3], which culminated in the
well-known Berger equation. The first application of the boundary-element method (BEM)
to classical plate theory can be traced to the work of Jaswon, Maiti and Symm [4]. The
application of the direct BEM for analysis of the Reissner plate was presented by Vander
Ween [5]. Later, Karam and Telles [6] extended the formulation to account for infinite regions.
Rashed, Aliabadi and Brebbia [7,8] presented a BEM formulation for Reissner plates rest-
ing on Pasternak and Winkler foundations. Wen, Aliabadi and Young [9] presented a bound-
ary-only formulation for shear-deformable plates and shells using the dual reciprocity method.
The application of the boundary-element method to large nonlinear deformation is relatively
new, with only a few publications dealing with this topic. Tanaka [10] presented a coupled
boundary and inner-domain integral equation in terms of stress and displacement functions
based on von Kármán’s equation. Kamiya and Sawaki [11] investigated the large deflection
of elastic plates based on the Berger equation. Ye and Lin [12] analysed the finite deflection
of a thin plate by the boundary-element method. Based on the general nonlinear differential
equations describing the finite deflection of the plate, an integral equation formulation for the
geometrically nonlinear analysis of a Reissner-type plate was proposed by Lei, Huang and
Wang [13]. Later, Sun, He and Qin [14] derived the exact boundary equation for a nonlinear
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Reissner plate based on a variational principle. Other contributions can be found in the
papers by Sladek and Sladek [15], Katsikadelis [16] and Atluri and Pipkins [17].

A hypersingular boundary-element formulation for Reissner-plate bending was presented
by Rashed, Aliabadi and Brebbia [18], a dual boundary-element method for analysis of frac-
ture-mechanics problems was developed by Wen, Aliabadi and Young [19] and, Dirgant-
ara and Aliabadi [20]. A comprehensive review of BEM formulation is given by Aliabadi
[21,22]. In the analysis of geometrically nonlinear plate-bending problems, one of the
difficulties concerns the evaluation of domain integrals in the boundary-integral equations,
coupling the plate-bending and membrane terms. In this paper, the derivation and implemen-
tation of domain boundary-integral equations for the large deformation of shear-deformable
plates are presented. The domain integrals that appear in the formulation are treated in two
different ways: firstly, they are evaluated as hypersingular integrals, and secondly, an approxi-
mation function is used to calculate the derivatives of the nonlinear terms in the domain inte-
gral. Four different methods are investigated for the solution of the nonlinear problem. They
include methods requiring increments of the load and a method based on the solution of the
nonlinear system of equations. Several examples are presented, and comparisons with analyt-
ical results and other numerical results made, to demonstrate the accuracy of the proposed
methods.

2. Governing equations

The equations governing the deflection of geometrically nonlinear plates (see Figure 1) can be
written in compact form, using indicial notation, as follows

Mαβ,β −Qα =0, (1)

Qα,α + (Nαβw3,β),α +q =0, (2)

Nαβ,β =0, (3)

where q is the load

Mαβ = 1−ν

2
D

(
wα,β +wβ,α + 2ν

1−ν
wγ,γ δαβ

)
, (4)

Qα =C(wα +w3,α), (5)

Nαβ =N linear
αβ +Nnonlinear

αβ , (6)

N linear
αβ = 1−ν

2
B

(
uα,β +uβ,α + 2ν

1−ν
uγ,γ δαβ

)
, (7)

Nnonlinear
αβ = 1−ν

2
B

(
w3,βw3,α + v

1−ν
w3,γ w3,γ δαβ

)
. (8)

Here B(=Eh/
(
1−ν2

)
) is the tension stiffness, D(=Eh3/

[
12

(
1−ν2

)]
) is the bending stiffness

of the plate, C(=
[
D (1−ν)λ2

]
/2) is the shear stiffness, λ(= √

10/h) is the shear factor, h is
the thickness of the plate, ν is Poisson’s ratio, Nαβ are in-plane stress resultants, Qα and Mαβ

are out-of-plane stress resultants and moments, uα and w3 are translation of displacements
in the x1-, x2-(in-plane) and x3-(out-of-plane) directions, wα are rotations in the xα-direction,
and δαβ is the Kronecker delta.

Indicial notation is used throughout this paper. Greek indices vary from 1 to 2, and
Roman indices vary from 1 to 3.
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Figure 1. Stress resultant equilibrium for geometrically nonlinear plate element.

3. Boundary-integral equations

The derivation of boundary-integral equations for geometrically nonlinear plate-bending
problems follows the linear analysis described by Dirgantara and Aliabadi [20] and Aliaba-
di [22]. Applying Betti’s reciprocal theorem to the governing equations for the bending and
transverse stress resultants at an arbitrary domain point X

′ ∈�, we find

wi(X′)+
∫

�

P ∗
ij (X

′,x)wj (x)d�(x)=
∫

�

W ∗
ij (X

′,x)pj (x)d�(x)+

+
∫

�

W ∗
i3(X

′,X)q(X)d�(X)+
∫

�

W ∗
i3(X

′,X)(Nαβw3,β),αd�(X), (9)

where � and � denote the boundary and domain respectively, x,x′ ∈�, X,X′∈� and

{p}= [Mαβnβ,Qβnβ ].

In the same way, a boundary-integral equation for the in-plane displacements at domain
point X′ can be derived as

uθ (X′)+
∫

�

T ∗
θα(X′,x)uα(x)d�(x)=

∫
�

U∗
θα(X′,x)t linear

α (x)d�(x)+

+
∫

�

U∗
θα(X′,X)Nnonlinear

αγ,γ (X)d�(X), (10)

where

t linear
α =N linear

αβ nβ.

Moving the point X′ to the boundary, that is X′ → x′ at �, boundary-integral equations
are obtained for the out-of-plane plate-bending problems

Cijwi(x′)+
∫

�

P ∗
ij (x

′,x)wj (x)d�(x)=
∫

�

W ∗
ij (x

′,x)pj (x)d�(x)+

+
∫

�

W ∗
i3(x

′,X)q(X)d�(X)+
∫

�

W ∗
i3(x

′,X)(Nαβw3,β),αd�(X), (11)

where Cij = δij /2 for x′ on a smooth boundary and

Cθαuα(x′)+
∫

�

T ∗
θα(x′,x)uα(x)d�(x)=

∫
�

U∗
θα(x′,x)t linear

α (x)d�(x)+

+
∫

�

U∗
θα(x′,X)Nnonlinear

αγ,γ (X)d�(X) (12)
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for the in-plane problems, where Cθα = δθα/2 for x′ on a smooth boundary. The fundamental
solutions P ∗

ij ,W
∗
ij,T

∗
θα and U∗

θα are listed in Appendix A.

4. Large-deformation analysis

In this section, two methods for evaluating the domain integrals that appear in the formula-
tion are described: the domain-integral method and approximation-function method.

4.1. Domain-integral method

The nonlinear terms that appear in the domain integrals are calculated directly by use of a domain-
integration procedure. Integrating by parts the last terms in Equations (11) and (12), we find

Cijwi(x′)+
∫

�

P ∗
ij (x

′,x)wj (x)d�(x)=
∫

�

W ∗
ij (x

′,x)pj (x)d�(x)+
∫

�

W ∗
i3(x

′,X)q(X)d�(X)

+
∫

�

W ∗
i3(x

′,x)(Nαβw3,β) nα(x)d�(X)−
∫

�

W ∗
i3,α(x′,X)(Nαβw3,β)d�(X) (13)

and

Cθαuα(x′)+
∫

�

T ∗
θα(x′,x)uα(x)d�(x)=

∫
�

U∗
θα(x′,x)t linear

α (x)d�(x)

=+
∫

�

U∗
θα(x′,x)Nnonlinear

αγ nγ (x)d�(X)−
∫

�

U∗
θα,γ (x′,X)Nnonlinear

αγ (X)d�(X), (14)

which can be simplified to

Cijwi(x′)+
∫

�

P ∗
ij (x

′,x)wj (x)d�(x)=
∫

�

W ∗
ij (x

′,x)pj (x)d�(x)+

+
∫

�

W ∗
i3(x

′,X)q(X)d�(X)−
∫

�

W ∗
i3,α(x′,X)(Nαβw3,β)d�(X) (15)

and

Cθαuα(x′)+
∫

�

T ∗
θα(x′,x)uα(x)d�(x)=

∫
�

U∗
θα(x′,x)tα(x)d�(x)−

−
∫

�

U∗
θα,γ (x′,X)Nnonlinear

αγ (X)d�(X), (16)

where

{p}= [Mαβnβ,Qβnβ ] and tα =Nαβnβ.

To calculate the nonlinear terms, two additional integral equations are required, including
the derivative of deflection w3,γ equation

w3,γ (X′)=
∫

�

W ∗
3j,γ (X′,x)pj (x)d�(x)−

∫
�

P ∗
3j,γ (X′,x)wj (x)d�(x)+

+
∫

�

W ∗
33,γ (X′,X)q(X)d�(X)−

∫
�

W ∗
33,γ α(X′,X)(Nαβw3,β) d�(X) (17)

and the membrane stress resultant N linear
αβ equation;

N linear
αβ (X′)=

∫
�

U∗
δαβ(X′,x)tδ(x)d�(x)−

∫
�

T ∗
δαβ(X′,x)uδ(x)d�(x)−

−
∫

�

U∗
δαβ(X′,X)Nnonlinear

δγ,γ (X)d�(X), (18)

where the fundamental solutions U∗
θα,γ , W ∗

3j,γ
, W ∗

33,γ α
, U∗

δαβ, T ∗
δαβ and U∗

δαβγ are listed in
Appendix A.
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4.2. Approximation-function method and numerical implementation

An alternative formulation is now presented for dealing with the domain integrals due to
the nonlinear terms. The main reason for this new formulation is to avoid direct calcula-
tion of the hypersingular integrals. Although the evaluation of these integrals is not extremely
demanding with constant cells, higher-order cells require elaborate integration schemes (see
[22]). The approximate-function method proposed here avoids these difficulties for higher-
order cells. Equations (11) and (12) are used in this method. To calculate the nonlinear terms,
three additional integral equations are required. The first equation is Equation (9), and the
second equation is the derivative of deflection, w3,γ obtained from (9) as

w3,γ (X′)=
∫

�

W ∗
3j,γ (X′,x)pj (x)d�(x)−

∫
�

P ∗
3j,γ (X′,x)wj (x)d�(x)+

+
∫

�

W ∗
33,γ (X′,X)q(X)d�(X)+

∫
�

W ∗
33,γ (X′,X)(Nαβw3,β),α d�(X). (19)

The third equation is the membrane stress resultant N linear
αβ representation obtained from (18)

using (7):

N linear
αβ (X′)=

∫
�

U∗
δαβ(X′,x)t linear

δ (x)d�(x)−
∫

�

T ∗
δαβ(X′,x)uδ(x)d�(x)+

+
∫

�

U∗
δαβ(X′,X)Nnonlinear

δγ,γ (X)d�(X). (20)

It can be seen that the nonlinear domain terms are now represented by (Nαβw3,β),α.
The fundamental solution W ∗

i3,γ
has a lower-order singularity than W ∗

33,γ α
appearing in

Equation (17).
Equations (9), (11) and (19) can be rewritten in alternative forms

wi(X′)+
∫

�

P ∗
ij (X

′,x)wj (x)d�(x)=
∫

�

W ∗
ij (X

′,x)pj (x)d�(x)+

+
∫

�

W ∗
i3(X

′,X)q(X)d�(X)+
∫

�

W ∗
i3(X

′,X)(Nαβ,αw3,β +Nαβw3,αβ)d�(X), (21)

Cijwi(x′)+
∫

�

P ∗
ij (x

′,x)wj (x)d�(x)=
∫

�

W ∗
ij (x

′,x)pj (x)d�(x)+

+
∫

�

W ∗
i3(x

′,X)q(X)d�(X)+
∫

�

W ∗
i3(x

′,X)(Nαβ,αw3,β +Nαβw3,αβ)d�(X), (22)

w3,γ (X′)=
∫

�

W ∗
3j,γ (X′,x)pj (x)d�(x)−

∫
�

P ∗
3j,γ (X′,x)wj (x)d�(x)+

+
∫

�

W ∗
33,γ (X′,X)q(X)d�(X)+

∫
�

W ∗
33,γ (X′,X)(Nαβ,αw3,β +Nαβw3,αβ) d�(X). (23)

To calculate the derivatives of the nonlinear terms, the nonlinear terms are approximated
by use of a radial basis function;

f m(x)=f (x,xm)=
√

C2 + (rm)2, (24)

where rm(x)=
√

(x1 −xm
1 )2 + (x2 −xm

2 )2.

The nonlinear terms Nnonlinear
δγ,γ in the in-plane Equations (12) and (20) are evaluated as:

Nnonlinear
δγ (x1, x2)=

M∑
m=1

f m(X)
m
δγ , (25)
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where M is the number of selected points, and the coefficients 
m
δγ are determined by values

at the selected point m as

� =F−1{Nnonlinear
δγ }, (26)

where F :=f (x), {Nnonlinear
δγ } :=Nnonlinear

δα (Xm); m=1, . . . ,M and

Nnonlinear
δγ,γ (x1, x2) = f(X),γ F−1{Nnonlinear

δγ }. (27)

Four approximations are available for calculating the nonlinear terms appearing in the
plate-bending equation, as will be shown below.

4.2.1. Approximation function method I
The nonlinear terms (Nαβw3,β),α in Equations (9), (11) and (19) are calculated as:

(Nαβw3,β)(x1, x2)=
M∑

m=1

f m(x)
m, (28)

� =F−1{Nαβw3,β}, (29)

(Nαβw3,β),α(x1, x2)= f(x),αF−1{Nαβw3,β}. (30)

4.2.2. Approximation function method II
The nonlinear terms (Nαβ,αw3,β + Nαβw3,αβ) in Equations (21), (22) and (23) are calculated
as follows.

For Nαβ,α:

Nαβ(x1, x2)=
M∑

m=1

f m(X)
m
α , (31)

� =F−1{Nαβ}, (32)

where {Nαβw3,β}= (Nαβw3,β)(Xm), m=1, . . . ,M

Nαβ,α(x1, x2)= f(X),αF−1{Nαβ}. (33)

For w3,αβ :

w3,β(x1, x2)=
M∑

m=1

f m(X)
m
β , (34)

� =F−1{w3,β}, (35)

where {w3,β}=w3,β(Xm), m=1, ...M,

w3,αβ(x1, x2)= f(X),αF−1{w3,β}. (36)
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Figure 2. BEM model.

4.2.3. Approximation function method III
The term Nαβ,α is calculated in Equations (31)–(33). The terms w3,β and w3,αβ in Equations
(21)–(23) are calculated as follows

w3(x1, x2)=
M∑

m=1

f m(X)
m, (37)

� =F−1{w3}, (38)

where {w3}=w3(X
m), m=1, . . . ,M

w3,β(x1, x2)= f(X),βF−1{w3}, (39)

w3,αβ(x1, x2)= f(X),αf(X),βF−1{w3}. (40)

4.2.4. Approximation function method IV
This approximation is the same as III, but involves selected points on the boundary and in
the domain,

w3(x1, x2)=
N+M∑
m=1

f m(X)
m, (41)

where N is a number of boundary nodes.

4.2.5. Numerical implementation
Quadratic isoparametric boundary elements were used to discretise the boundary, and con-
stant cell elements (as shown in Figure 2) were used to descretize the domain. Details of the
discretization procedures are given by [20].

5. Incremental approach and solution procedures

In this section, four methods are presented for dealing with the nonlinear problem.

5.1. Total incremental method

In this method, the load is divided into small load steps, and the equations are transformed
into a system of algebraic equations,

[Hp]{wk+1}+ [Gp]{pk+1}= [Bp]{(Nαβw3,β)k,α + (k +1)
◦
q}, (42)
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[Hm]{uk+1}+ [Gm]{tk+1}= [Bm]{Nnonlinear (k)
αβ,β }, (43)

where k denotes the incremental step; the superscript
◦
(.) denotes the incremental value of a

term.
Once the matrices [Hp], [Gp], [Bp], [Hm], [Gm] and [Bm] have been formed, they can be

stored and used in each increment without any further change. Moreover, the system of equa-
tions can be solved by the LU -decomposition method, slightly modified to store the matrix
coefficients in the core and reuse in each increment.

In the loading step, the (k + 1)th approximation is estimated by use of the kth approxi-

mation for the terms on the right-hand side. Suppose that
◦
Nαβ

(k) and
◦
w3,β

(k) express the
kth approximations. The initial values of the first loading step (k =1) can be set, for example◦
Nαβ

linear(k) =0, and
◦
w3,β

(k) =0. The loading step in each increment, q = (k +1)
◦
q.

Relaxation procedures are adopted to improve the numerical results. When the nonlinear
terms are calculated in each step of increment, the deflection w3, and its derivative w3,β , can
be modified as follows:

ŵk+1
3 = ε wk+1

3 + (1− ε) wk
3, (44)

ŵk+1
3,β

= ε wk+1
3,β

+ (1− ε) wk
3,β , (45)

where ε is chosen as 0·5 and k ≥2. The flow chart of the total increment method is shown in
Figure 3.

5.2. Cumulative load incremental method

Alternatively, the total load could be presented as a cumulative load incremental method. The

nonlinear tensors
◦
Nαβ

nonlinear are written as

◦
N

nonlinear(k)

11 = B

2

[
2wk−1

3,1
◦
w

k

3,1 + ◦
w

k

3,1
◦
w

k

3,1 + ν(2wk−1
3,2

◦
w

k

3,2 + ◦
w

k

3,2
◦
w

k

3,2)

]
, (46)

◦
N

nonlinear(k)

22 = B

2

[
2wk−1

3,2
◦
w

k

3,2 + ◦
w

k

3,2
◦
w

k

3,2 + ν(2wk−1
3,1

◦
w

k

3,1 + ◦
w

k

3,1
◦
w

k

3,1)

]
, (47)

◦
N

nonlinear(k)

12 = 1−ν

2
B

[
wk−1

3,1
◦
w

k

3,2 + ◦
w

k

3,1
◦
w

k

3,2 +wk−1
3,2

◦
w

k

3,1

]
. (48)

The equations can be written in terms of the incremental values. The loads are divided
into small load steps, and the equations are represented as an incremental system of algebraic
equations:

[Hp]
{

◦
w

k+1
}

+ [Gp]
{ ◦
p

k+1
}

= [Bp]

{(
o

Nαβ
◦
w3,β

)k

,α

+ ◦
q

}
, (49)

[Hm]
{

◦
u

k+1
}

+ [Gm]
{◦
t

k+1
}

= [Bm]
{

o

N
nonlinear(k)

αβ,β

}
, (50)

where k denotes incremental step; superscript
◦
(.) is incremental of term.

Similar to the total incremental method, once the matrices [Hp], [Gp], [Bp], [Hm], [Gm]
and [Bm] have been calculated, they can be used in each increment step. The loading is done
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Figure 3. Flow chart of the total incremental method.
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linearo o
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o

0.0
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k + 1 k w3, α w3, α w3, α=    + ;
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q    =  q +  q

ok + 1 k

Write
the output

No
Final step

End

Yes

assume the initial values of N = 0.0 and w

Figure 4. Flow chart of sub-incremental cumulative
method.

in small constant loading step
◦
q. Then the incremental quantities obtained at each loading

step are simply summed up and the modified LU -decomposition is used to solve the system
of equations. The relaxation procedures as described in Equations (44) and (45) are applied.
The flow chart of the sub-incremental cumulative method is shown in Figure 4.

5.3. Euler method

The Euler method is similar to the cumulative load incremental method, but the terms◦
Nαβ

nonlinear are expressed as the first derivative of Nαβ ;

◦
N

nonlinear(k)

11 =B
(
wk

3,1
◦
w

k

3,1 +νwk
3,2

◦
w

k

3,2

)
, (51)

◦
N

nonlinear(k)

22 =B
(
wk

3,2
◦
w

k

3,2 +νwk
3,1

◦
w

k

3,1

)
, (52)

◦
N

nonlinear(k)

12 = 1−ν

2
B

(
wk

3,1
◦
w

k

3,2 +wk
3,2

◦
w

k

3,1

)
, (53)
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where wk+1
3,α

= wk
3,α

+ ◦
w

k

3,α . Therefore the system of algebraic equations can be written as
follows:

[B]
{

◦
w

k+1
}

+ [C]
{ ◦

p
k+1

}
= [D]

{(
Nk

αβ

◦
w

k

3,α + ◦
N

k

αβ wk
3,β

)
,α

+ ◦
q, (54)

[E]
{

◦
u

k+1
}

+ [F ]
{ ◦

t
k+1

}
= [G]

{ ◦
Nαβ,β

nonlinear(k)
}
, (55)

where Nk+1
αβ = Nk

αβ+ ◦
N

k

αβ . The loading is also provided in a small loading step
◦
q. The

previous incremental quantities obtained are simply summed up in each loading step. The
modified LU -decomposition is also adopted to solve the system of equations. The relaxation
procedures as described for Equations (44) and (45) are applied. The flow chart of the Euler
method is similar to the flow chart for sub-incremental cumulative method.

5.4. Nonlinear-system method

This method can only be applied to the domain-integral method. By introducing the
increment terms into the Equations (15)–(18), such that wk+1

i =wk
i +

◦
wi; uk+1

α =uk
α+ ◦

uα; etc;
the boundary-integral equations for plate bending can be rewritten as

Cij (w
k
i (x

′)+ ◦
wi (x

′
))+

∫
�

P ∗
ij (x

′,x)(wk
j (x)+ ◦

wj (x))d�(x)=

=
∫

�

W ∗
ij (x

′,x)(pk
j (x)+ ◦

pj (x))d�(x)+
∫

�

W ∗
i3(x

′,X)(qk(X)+ ◦
q (X))d�(X)−

−
∫

�

W ∗
i3,α(x′,X)((Nk

αβ+ ◦
Nαβ)(wk

3,β+ ◦
w3,β))d�(X). (56)

Neglecting the higher-order incremental terms, we have

Cij (w
k
i (x

′)+ ◦
wi (x

′
))+

∫
�

P ∗
ij (x

′,x)(wk
j (x)+ ◦

wj (x))d�(x)=

=
∫

�

W ∗
ij (x

′,x)(pk
j (x)+ ◦

pj (x))d�(x)+
∫

�

W ∗
i3(x

′,X)(qk(X)+ ◦
q (X))d�(X)−

−
∫

�

W ∗
i3(x

′,X)((Nk
αβwk

3,β +Nk
αβ

◦
w3,β))d�(X)−

−
∫

�

W ∗
i3,α(x′,X)((

1−ν

2
B(wk

3,β

◦
w3,α + ◦

w3,β wk
3,α +2

ν

1−ν
wk

3,γ

◦
w3,γ δαβ))wk

3,β)d�(X)−

−
∫

�

W ∗
i3,α(x′,X)(

◦
N

linear

αβ wk
3,β)d�(X). (57)

The boundary-integral equations for the membrane are:

Cθα(uk
α(x′)+ ◦

uα (x′))+
∫

�

T ∗
θα(x′,x)(uk

α(x)+ ◦
uα (x))d�(x)=

=
∫

�

U∗
θα(x′,x)(tkα(x)+ ◦

tα (x))d�(x)−
∫

�

U∗
θα,γ (x′,X)Nnonlinear

αγ
k(X)d�(X)−

−
∫

�

U∗
θα,γ (x′,X)(

1−ν

2
B(wk

3,α

◦
w3,γ + ◦

w3,α wk
3,γ +2

ν

1−ν
wk

3,η

◦
w3,η δαβ)d�(X). (58)
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The derivative of the out-of-plane displacement is described by

wk
3,γ (X′)+ ◦

w3,γ (X′)=
∫

�

W ∗
3j,γ (X′,x)(pk

j (x)+ ◦
pj (x))d�(x)−

−
∫

�

P ∗
3j,γ (X′,x)(wk

j (x)+ ◦
wj (x))d�(x)+

∫
�

W ∗
33,γ (X′,X)(qk(X)+ ◦

q (X))d�(X)−

−
∫

�

W ∗
33,γ α(X′,X)((Nk

αβwk
3,β +Nk

αβ

◦
w3,β)) d�(X)−

−
∫

�

W ∗
33,γ α(X′,X)(

1−ν

2
B(wk

3,β

◦
w3,α + ◦

w3,β wk
3,α +

+2
ν

1−ν
wk

3,γ

◦
w3,γ δαβ)wk

3,β)d�(X)+
∫

�

W ∗
33,γ α(X′,X)(

◦
N

linear

αβ wk
3,β)d�(X). (59)

The membrane stress resultants are described by

N linear
αβ

k(X′)+ ◦
N

linear

αβ (X′)=
∫

�

U∗

αβ(X′,x)(tk
(x)+ ◦

t
 (x))d�(x)−

−
∫

�

T ∗

αβ(X′,x)(uk


(x)+ ◦
u
 (x))d�(x)−

∫
�

U∗

αβ,γ (X′,X)Nnonlinear


γ
k(X)d�(X)−

−
∫

�

U∗

αβ,γ (X′,X)(

1−ν

2
B(wk

3,


◦
w3,γ + ◦

w3,
 wk
3,γ +2

ν

1−ν
wk

3,η

◦
w3,η δαβ)d�(X). (60)

Rearranging Equations (57)–(60), so that all unknown incremental terms are on the left-hand
side, we obtain

Cij
◦
wi (x

′
)+

∫
�

P ∗
ij (x

′,x)
◦
wj (x)d�(x)−

∫
�

W ∗
ij (x

′,x)
◦
pj (x)d�(x)+

+
∫

�

W ∗
i3,α(x′,X)(Nk

αβ

◦
w3,β)d�(X)+

∫
�

W ∗
i3,α(x′,X)(wk

3,β(
1−ν
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◦
w

k

3,β

◦
w3,α +

+ ◦
w3,β wk
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ν

1−ν
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◦
w3,γ δαβ)))d�(X)+

∫
�
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3,β

◦
N

linear

αβ )d�(X)=

=
∫

�

W ∗
i3(x

′,X)(qk(X)+ ◦
q (X))d�(X)−Cijw

k
i (x

′)+
∫

�

W ∗
ij (x

′,x)pk
j (x)d�(x)+

−
∫

�

W ∗
i3(x

′,X)(Nk
αβwk

3,β)d�(X)−
∫

�

P ∗
ij (x

′,x)wk
j (x)d�(x) (61)

for plate bending problems,

Cθα
◦
uα (x′)+

∫
�

T ∗
θα(x′,x)

◦
uα (x)d�(x)−

∫
�
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θα(x′,x)

◦
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1−ν

2
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3,α

◦
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w3,α wk
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3,η

◦
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=
∫

�
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θα(x′,x)tkα(x)d�(x)−Cθαuk
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∫

�
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αγ
k(X)d�(X)−

−
∫

�
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θα(x′,x)uk

α(x)d�(x) (62)
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for membrane problems,

◦
w3,γ (X′)−

∫
�

W ∗
3j,γ (X′,x)

◦
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∫
�

P ∗
3j,γ (X′,x)

◦
wj (x)d�(x)−

−
∫

�

W ∗
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3,γ
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∫
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W ∗
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◦
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−
∫
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◦
N
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3,β)d�(X)=

∫
�

W ∗
3j,γ (X′,x)pk

j (x)d�(x)−wk
3,γ (X′)−

−
∫

�

W ∗
33,γ α(X′,X)(Nk

αβwk
3,β) d�(X)+

∫
�

W ∗
33,γ (X′,X)(qk(X)+ ◦

q (X))d�(X)−

−
∫

�

P ∗
3j,γ (X′,x)wk

j (x)d�(x) (63)

for the derivative of deflection, and

◦
N

linear

αβ (X′)−
∫

�

U∗

αβ(X′,x)

◦
t
 (x)d�(x)+

∫
�

T ∗

αβ(X′,x)

◦
u
 (x)d�(x)+

+
∫

�

U∗

αβ,γ (X′,X)(

1−ν

2
B(w3,


◦
w3,γ + ◦

w3,
 w3,γ +2
ν

1−ν
w3,η

◦
w3,η δαβ)d�(X)=

=
∫

�

U∗

αβ(X′,x)tk
(x)d�(x)−N linear

αβ (X′)−
∫

�

T ∗

αβ(X′,x)uk


(x)d�(x)−

−
∫

�

U∗

αβ,γ (X′,X)Nnonlinear


γ (k)(X)d�(X) (64)

for the linear membrane stress resultants.
It can be seen that there are ten unknown incremental variables

◦
p(x),

◦
w(x),

◦
t (x) and

◦
u(x)

on the boundary, and five variables
◦
N

linear

αβ ,
◦
w3,
 in the domain. Equations (61)–(64) can be

collected into the following final system of equations:

A 
X = 
F. (65)

In this case, the matrix A is updated in each load increment.
For an iteration process, the Newton-Raphson procedure is adopted together with the

Equations (61)–(64). The matrix A is updated in each iteration. The iteration calculation is
repeated until the following convergence condition for the kth iteration and the (k +1)th iter-
ation is satisfied,

∣∣∣∣∣
wk+1

max −wk
max

wk
max

∣∣∣∣∣ ≤ ε (66)

where ε is a small convergence parameter. The flow chart of the simultaneous integral method
is shown in Figure 5.

6. Numerical examples

To assess the accuracy of the proposed methods for the analysis of problems involving large
deformations, several examples with two restraint models and combination of them are pre-
sented in Figure 6. The BEM models for domain cell integration are shown in Figure 2.
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Figure 5. Flow chart of the nonlinear system of
equation method.
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Figure 6. Restraint models.
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Comparisons are made with other numerical methods and analytical results. In the following
examples, the dimensionless parameters are defined as follows:

Q= q a4

E h4
, (67)

Z = wmax
3

h
, (68)

where a is the radius of a circular plate or width of a square plate, h is the plate thickness,
q is the uniformly lateral distributed load, E is the modulus of elasticity, and w3 is the lateral
deflection. The following abbreviations are used:
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Figure 9. Clamped square plate subjected to a uni-
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to a uniform load, q.

AFM: approximation-function method (domain cells), DIM: domain-integral method
(domain cells), for domain-integral evaluations. TIM: total-increment method, Euler: Euler
method, NSEM: nonlinear system of equations method, for solution procedures.

6.1. Study of different approximation functions

This example is used to study the accuracy of the different approximation-function methods pro-
posed for large deformation analysis. Four different approximations as described in Section 4.2
are used to evaluate the nonlinear terms which appear in the plate-bending equation. A simply
supported square plate subjected to uniform transverse loads is considered. Assuming that the
center of plate is at the origin, we obtain the boundary condition for this case as follows:

Along x =±a/2 : u1 =u2 =w3 =0, M12 =M11 =0

Along y =±a/2 : u1 =u2 =w3 =0, M12 =M22 =0

BEM meshes with 20 quadratic boundary-elements, and 25 domain cells (for domain inte-
gration) are used. The normalized maximum deflection values Z are plotted in Figure 7 and
compared with finite-element results [23]. It can be seen from the Figure 7 that the results of
all approximations are in good agreement (less than 1·5% difference) with the finite-element
results.

6.2. Total incremental method vs. cumulative-load incremental method

In this example, the accuracy and efficiency of the total increment method and the sub-incre-
ment method are compared. A comparison is also made of both methods with the imple-
mentation of the relaxation procedure described in Section 5.1. In this case study, a clamped
square plate subjected to a uniform transverse load q is analyzed. If the origin point (0·0,0·0)
is located at the center of plate, then the boundary conditions are:

Along x =±a/2 : u1 =u2 =w1 =w2 =w3 =0

Along y =±a/2 : u1 =u2 =w1 =w2 =w3 =0

BEM meshes with 20 quadratic boundary elements and 25 domain cells are used in this
analysis. The normalized maximum deflection values w are plotted in Figure 8 and compared
with finite-element results [23]. It can be seen from Figure 8, that the cumulative-load incre-
mental method is identical with the total incremental method. The results of both methods
are in good agreement with the reference results. By introducing the relaxation procedure, we
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can improve the numerical results. Without the relaxation procedure, the increment process
may involve fewer increments.

6.3. Clamped square plate

In this example, a plate is subjected to a uniform distribution load q (see Figures 2 and 6).
Considering the origin point (0·0,0·0) as the center of the plate, we have the following bound-
ary conditions for this case:

Along x =±a/2 : u1 =u2 =w1 =w2 =w3 =0,

Along y =±a/2 : u1 =u2 =w1 =w2 =w3 =0.

BEM meshes with 20 quadratic boundary elements and 25 domain cells are used. The prob-
lem is analyzed with different solution procedures, i.e., total increment method, the Euler
method and the simultaneous integral method with and without iterations. The normalized
maximum deflection values Z are plotted in Figure 9.

The results are compared with the finite-element result [23] and the analytical result [2].
Most BEM results differ less than 3% from the reference values but the results obtained using
the approximation-function method with a solution procedure involving the Euler method
exhibit larger errors for increasing values of Q.

6.4. Simply supported square plate

Here a simply supported plate subjected to a uniform distribution load q (see Figures 2 and
6) is analyzed. The boundary conditions are: u1 = u2 = w3 =0, Mαβnβ =0 along all sides.

BEM meshes with 20 quadratic boundary elements and 25 domain cells are used. The
problem is analyzed with different solution procedures, i.e., total increment method, Euler
method and simultaneous integral method with and without iterations. The normalized max-
imum deflection values Z are plotted in Figure 10. The normalized BEM values of maximum
deflection of the plate, finite-element result [23] and the analytical result [2] are plotted in
Figure 10. Good agreement with the references (<2% difference) is achieved.

6.5. A square plate with clamped and simply supported edges

A plate subjected to a uniform transverse load q (see Figure 2 and Figure 6) is analyzed. The
boundary conditions for this case are as follows (the origin is at the center of the plate):

Along x =±a/2 : u1 =u2 =w1 =w2 =w3 =0,

Along y =±a/2 : u1 =u2 =w3 =0, M22 =M12 =0.

BEM meshes with 20 quadratic boundary elements and 25 domain cells are used. The prob-
lem is analyzed with different solution procedures, including the total increment method,
the Euler method and the simultaneous integral method with and without iterations. The
normalized maximum deflection values Z of the present method are plotted in Figure 11 and
compared with the finite-strip results [24]. The present results are in good agreement with the
references.

6.6. Clamped circular plate

A circular plate is subjected to a uniform distribution load q (see Figure 2 and 6).
The perimeter of the plate is restrained from rotation and translation; u1 = u2 = w1 =
w2 = w3 = 0. BEM meshes with 16 quadratic boundary elements and 49 domain cells are
used. The normalized maximum deflection values Z of the present method are plotted in
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Figure 12 and compared with the finite-element results [25]. BEM results are in good
agreement with the reference (less than 1% difference). But the results obtained using the
approximation-function method with solution procedure involving the Euler method exhibit
the largest errors.

6.7. Conclusions

In this paper, boundary-integral equations for large deformation of shear-deformable plates
were presented. In the analysis of the geometrically nonlinear plate-bending problem, the
domain integrals consist of coupling of the plate-bending and membrane terms. Four different
approximation functions were used to calculate the derivatives of the nonlinear terms in the
domain integral. All approximations were shown to provide good agreement with finite-ele-
ment results. Also presented were different solution procedures for the nonlinear problem. Ini-
tially, the accuracy and efficiency of the total-increment method and cumulative incremental
method were assessed and compared. It was shown that by introducing a relaxation proce-
dure, the numerical results can be improved. Several examples have been presented and com-
parisons made to demonstrate the accuracy of the proposed method with analytical results
and other numerical results. The BEM results are in good agreement with the references. The
best nonlinear method and solution procedure for solving large-deflection problems was found
to be the combination of the approximate-function method and the total-increment method.
One of the advantages of the boundary-element formulation presented for nonlinear prob-
lems in this paper is that, once the coefficient matrices have been formed, they can be used
in each increment of load without further change. Moreover, the system of equations can be
solved fast if the LU-decomposition is employed. Hence, computational time is considerably
faster than for the finite-element method which requires updating the stiffness matrices in each
increment.

Appendix A. Fundamental solutions

Plate-bending problem

The expressions for the kernels W ∗
ij and P ∗

ij are given in [5] as follows:

W ∗
αβ = 1

8πD(1−ν)

{
[8B(z)− (1−ν)(2 log z−1)]δαβ − [8A(z)+2(1−ν)]r,αr,β

}
,
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W ∗
α3 =−W ∗

3α = 1
8πD

(2 log z−1)rr,α,

W ∗
33 = 1

8πD(1−ν)λ2
[(1−ν)z2(log z−1)−8 log z], (A1)

and

P ∗
γα = −1

4πr
[(4A(z)+2zK1(z)+1−ν)(δαγ r,n + r,αnγ )

+(4A(z)+1+ν)r,γ nα −2(8A(z)+2zK1(z)+1−ν)r,αr,γ r,n],

P ∗
γ 3 = λ2

2π
[B(z)nγ −A(z)r,γ r,n],

P ∗
3α = −(1−ν)

8π

[(
2
(1+ν)

(1−ν)
ln z−1

)
nα +2r,αr,n

]
,

P ∗
33 = −1

2πr
r,n. (A2)

The expressions for the kernels W ∗
3j,θ

and W ∗
33,θγ

are written as

W ∗
3α,θ =− 1

8πD

(
2r,θ r,α + (2 log z−1)δαθ

)
,

W ∗
33,θ = 1

8πDλ
r,θ

[
(2 log z−1)− 8

z(1−ν)

]
,

W ∗
33,θγ = 1

8πD

[
(2 log z−1)+2r,θ r,γ − 8(δθγ −2r,θ r,γ )

z2(1−ν)

]
. (A3)

The expression for the kernels P ∗
3j,θ

is written as

P ∗
3α,θ = −(1−ν)

4πr

[(
(1+ν)r,θ

(1−ν)

)
nα + r,αnθ −3r,θ r,nr,α + δαθ r,n

]
,

P ∗
33,θ = −1

2πr2

[
nθ −2r,θ r,n

]
. (A4)

The expressions for W ∗
ijk, P ∗

ijk and Q∗
iβ are [5]:

W ∗
αβγ = 1

4πr
[(4A(z)+2zK1(z)+1−ν)(δβγ r,α + δαγ r,β)

−2(8A(z)+2zK1(z)+1−ν)r,αr,βr,γ + (4A(z)+1+ν)δαβr,γ ],

W ∗
αβ3 = −(1−ν)

8π

[(
2
(1+ν)

(1−ν)
log z−1

)
δαβ +2r,αr,β

]
,

W ∗
3βγ = λ2

2π
[B(z)δγβ −A(z)r,γ r,β ],

W ∗
3β3 = 1

2πr
r,β, (A5)
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P ∗
αβγ = D(1−ν)

4πr2
{(4A(z)+2zK1(z)+1−ν)(δγαnβ + δγβnα)

+ (4A(z)+1+3ν)δαβnγ − (16A(z)+6zK1(z)+ z2K0(z)+2−2ν)

× [(nαr,β +nβr,α)r,γ + (δγαr,β + δγβr,α)r,n]

−2(8A(z)+2zK1(z)+1+ν)(δαβr,γ r,n +nγ r,αr,β)

+4(24A(z)+8zK1(z)+ z2K0(z)+2−2ν)r,αr,βr,γ r,n},

P ∗
αβ3 = D(1−ν)λ2

4πr
[(2A(z)+ zK1(z))(r,βnα + r,αnβ)

−2(4A(z)+ zK1(z))r,αr,βr,n +2A(z)δαβr,n],

P ∗
3βγ = −D(1−ν)λ2

4πr
[(2A(z)+ zK1(z))(δγβr,n + r,γ nβ)

+2A(z)nγ r,β −2(4A(z)+ zK1(z))r,γ r,βr,n],

P ∗
3β3 = D(1−ν)λ2

4πr2
[(z2B(z)+1)nβ − (z2A(z)+2)r,βr,n], (A6)

Q∗
αβ = −r

64π
{(4 log z−3)[(1−ν)(r,βnα + r,αnβ)+ (1+3ν)δαβr,n]

+4[(1−ν)r,αr,β +νδαβ ]r,n},
Q∗

3β = 1
8π

[(2 log z−1)nβ +2r,βr,n], (A7)

where

A(z)=K0(z)+ 2
z

[
K1(z)− 1

z

]
, B(z)=K0(z)+ 1

z

[
K1(z)− 1

z

]
(A8)

and K0(z) and K1(z) are modified Bessel functions of the second kind [26], z =λr, λ is the
shear factor defined in Section 2, r is the distance between the source and the field points,
r,α = rα/r, where rα =xα(x)−xα(x′) and r,n = r,αnα.

Expanding the modified Bessel functions for small arguments, we find

K0(z)=
[
−γ − log

( z

2

)]
+

[
−γ +1− log

( z

2

)] (z2/4)

(1!)2

+
[
−γ +1+ 1

2
− log

( z

2

)]
(z2/4)2

(2!)2

+
[
−γ +1+ 1

2
+ 1

3
− log

( z

2

)]
(z2/4)3

(3!)2
+· · · , (A9)

K1(z)= 1
z

−
[
−γ + 1

2
− log

( z

2

)]
(z2/4)1/2

0!1!
−

[
−γ +1+ 1

4
− log

( z

2

)]
(z2/4)3/2

1!2!

−
[
−γ +1+ 1

2
+ 1

6
− log

( z

2

)]
(z2/4)5/2

2!3!
+· · · , (A10)

where γ =0·5772156649 is the Euler constant. Substituting equations (A9) and (A10) in equa-
tion (A8) and taking the limit as r →0; we find

lim
r→0

A(z)= −1
2

, lim
r→0

B(z)=−1
2

[
lim
r→0

log
( z

2

)
+γ + 1

2

]
. (A11)
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It can be seen that A(z) is a smooth function, whereas B(z) is a weakly singular O(log r)

function. Therefore, W ∗
ij is weakly singular and P ∗

ij has a strong (Cauchy principal value) sin-
gularity O(1/r).

In this work, the modified Bessel functions are evaluated using polynomial approximations
given in [26, Chapter 10].

Appendix B. Two-dimensional plane stress problem

The expressions for the kernels U∗
θα and T ∗

θα (Kelvin solution) are well known for two-dimen-
sional plane stress problems, and are given as [27] :

U∗
θα = 1

4πB (1−ν)

[
(3−ν) log

(
1
r

)
δθα + (1+ν) r,θ r,α

]
, (B1)

T ∗
θα =− 1

4πr

{
r,n

[
(1−ν) δθα +2 (1+ν) r,θ r,α

]
+ (1−ν)

[
nθ r,α −nαr,θ

]}
, (B2)

where U∗
θα are weakly singular kernels of order O(log

1
r
), and T ∗

θα are strongly singular in
order O(1/r).

The kernels U∗
αβγ and T ∗

αβγ are given by

U∗
αβγ = 1

4πr

[
(1−ν)

(
δγαr,β + δγβr,α − δαβr,γ

)+2 (1+ν) r,αr,βr,γ
]
, (B3)

T ∗
αβγ = B (1−ν)

4πr2

{
2r,n

[
(1−ν) δαβr,γ +ν

(
δγαr,β + δγβr,α

)−4 (1+ν) r,αr,βr,γ
]

+2ν
(
nαr,βr,γ +nβr,αr,γ

)+ (1−ν)
(
2nγ r,αr,β +nβδαγ +nαδβγ

)
− (1−3ν)nγ δαβ

}
. (B4)

The Kelvin functions U∗
θα,β and T ∗

θα,β are written as

U∗
θα,β = 1

4πB (1−ν) r

[
(1+ν) (δθβ + δαβ −2r,θ r,αr,β)− (3−ν) r,βδθα

]
[
(1−ν)

(
δγαr,β + δγβr,α − δαβr,γ

)+2 (1+ν) r,αr,βr,γ
]
, (B5)

T ∗
θα,β =− 1

4πr2

{
(nβ −2r,βr,n)

[
(1−ν) δθα +2 (1+ν) r,θ r,α

]
+r,βr,n

[
(1−ν) δθα +2 (1+ν) r,θ r,α

]
+r,n

[
2 (1+ν) ((δθβ − r,θ r,β)r,α + (δαβ − r,αr,β)r,θ )

]
+ (1−ν)

[
nθ (δαβ − r,αr,β)−nα(δθβ − r,θ r,β)− r,β(nθ r,α −nαr,θ )

]}
. (B6)

The kernel U∗
αβγ,θ is given by

U∗
αβγ,θ = 1

4πr2

[
(1−ν)

(
δγα(δβθ −2r,βr,θ )

)
+ (1−ν)

(
δγβ(δαθ −2r,αr,θ )− δαβ(δγ θ −2r,γ r,θ )

)
+2 (1+ν)

(
δαθ + δβθ + δγ θ −3r,αr,βr,γ r,θ

)]
. (B7)
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